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INTRODUCTION

Java  applets  simulating  physical  experiments  have  become
quite popular in physics education for several reasons:
• The  results  of  the  simulation  are  free  from  disturbing

influences, they lead to reproducible results.
• The graphical  representation of the experimental  situation

can be reduced to the essential aspects.
• The applets can be easily included in HTML pages for the

web or on CD-ROMs.

Of  course  simulations  can't  replace  real  experiments  in  the
classroom or lab:  The difficulties, which every experimenter
faces, and the care and accuracy necessary to cope with them
are an integral part of the experiences students have to make.

An increasing number of new physics textbooks contains such
applets on a supplementing CD-ROM [1,2]. The internet is a
treasure  trove  of  applets  for  all  branches  of  physics.  Good
starting points are f. i. the link collections of PhysicsWeb [3],
J.  Loviscach  [4]  or  the  project  „physik  multimedial“  [5].
Especially  in  the  area  of non-linear  oscillations  and  chaotic
systems there  exist  fine  applets  [6],  which complement  and
largely extend the examples described below.

Similar  approaches  use  software  tools  like  Matlab  [7]  or
Maple  [8].  Unlike  the  applets  presented  here,  they  need
substantial  mathematical  prerequisites,  which  make  them
better suited for advanced courses.

THE COURSE “NONLINEAR SYSTEMS AND CHAOS”

Nonlinear vibrations and chaotic systems have found attention
in  the  engineering  sciences  as  can  be  seen  by  a  growing
number of corresponding textbooks [9,10]. Sometimes they are
integrated  into  standard  courses  on  the  theory of  vibrations
[11],  but  usually  they  fall  victim  to  the  students'  lack  of
necessary  mathematical  prerequisites.  The  goal  of  the  short
course  described  here,  which  is  part  of  a  standard  physics
course for mechanical engineers [12], is to close this gap and
to provide  a  basic  physical  understanding  of  nonlinear  and
chaotic systems.

For a  successful  comprehension of the course one needs the
following prerequisites: In mathematics
• trigonometry,
• basic vector calculus,
• notion of the derivative
which are taught in beginner's mathematics courses, in physics
• decomposition of forces,
• Newton's equation of motion,
• basics of linear oscillations (spring pendulum),
which have been presented in a previous physics course and in
technical mechanics. The concept of the equation of motion as
a  differential  equation  is  known  from  physics,  further
knowledge  about  ordinary  differential  equations,  especially
methods for finding solutions, are not needed here.

At the end of the course the participants should know the basic
types of motion of nonlinear systems:
• harmonic oscillation as an approximation for small

amplitudes,
• dependency of the frequency on the amplitude,
• period doubling phenomenon,
• apparently irregular, “chaotic” motion.
They  should  know  the  phase  space  diagram  as  a  tool  to
investigate nonlinear systems and be able to apply it – together
with the Poincare  cut – to identify chaotic behavior. Finally
they  should  know  how  to  estimate  the  dependence  of  the
motion on the initial  conditions and its consequences for the
prediction of chaotic systems.

The mathematical  pendulum with harmonic excitation serves
as a fundamental example system. Its equation of motion
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can be derived explicitly using only the stated mathematical
prerequisites.  It  is  examined  closely with the  given  applets,
alternating  between  demonstrations  by the  lecturer  and  own
experiments  done  by  the  students.  The  applets  are  used  to
study  the  qualitative  behavior  and  for  concrete  “measure-
ments”  leading  to  quantitative  relations,  f.  i.  between  the
oscillation period and the amplitude for the free pendulum.
As a  complementing  example  the  Duffing  oscillator  is  pre-
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sented, which shows a very clear series of period doublings on
the route to chaos.

BASIC STRUCTURE OF THE APPLETS

The applets should be usable without further instructions. For
that reason they all have the same basic structure: They consist
of an input panel with all input controls, an object panel, which
displays  the  simulated  object  in  an  schematic  way,  and  an
output panel showing the results of measurements as numbers
or  graphically.  They  have  a  characteristic  color  and  are
arranged in a similar layout.

All  manipulations  on  the  simulated  system  are  done  via
special  input  elements:  a  timer,  numerical  input  fields  and
selection  boxes.  Other  possibilities  like  dragging  of  objects
with the mouse are ruled out because they are not immediately
obvious to the user.

The  timer  allows  to change  the  simulation  speed,  to pause,
continue and restart the simulation by using buttons with well-
known icons. All numerical  input elements have a slider  for
quick qualitative input and a text field for explicit typing-in of
an exact number, which is only accepted within the range that
is defined by the slider.  A short text or symbol explains the
physical  quantity  and  its  unit.  Selection  boxes  are  used  to
choose  the  curves  that  are  displayed  in  an  oscilloscope.
Sometimes they define  additional  plotting parameters.  These
boxes replace  a  legend:  Simply switching  on and off a  box
makes  evident  which  curve  corresponds  to  which  physical
quantity.

The output area  mainly  consists  of a  simulated  oscilloscope
that either shows physically interesting quantities as functions
of  time  or  one  quantity  depending  on  another  one  (x-y
oscilloscope). Since the magnitudes of the shown parameters
can vary largely,  the oscilloscope has  buttons to increase  or
decrease  the scale  in several  steps, each time by a factor of
two.

Quantitative  measurements  on  the  curves  can  be  done  by
clicking at an arbitrary point in the oscilloscope window. The
corresponding coordinates are now displayed, using the proper
SI  base  units, independently of the chosen display scale.  To

point out this feature, the cursor changes to a crosshair symbol
when the mouse is over the display area of the oscilloscope. To
make  it  possible  that  several  physical  quantities  can  be
displayed  within a  common numerical  scale  (assuming base
units), the initial  values of all  input parameters  are  tuned to
guarantee  that  the  corresponding  physical  quantities  have
similar  magnitudes in  SI  units. Changing system parameters
can lead  to diverging magnitudes of some quantities. In this
case a different scale has to be used for each curve to allow for
measurements of comparable accuracy.

In the example applets the object panel  shows the motion of
the  mathematical  pendulum  in  schematic  form.  A  more
realistic representation – using three-dimensional or lightning
effects - might be desirable,  but the necessary programming
effort is much larger  than the didactic benefit. Moreover the
simple  animation  always reminds  of the virtual  character  of
the “experiment”. Some of the applets have no object panel,
because  it  would  lead  to  no new  insights  and  the  space  is
needed  for  the  output  area.  Sometimes  the  oscilloscope  is
assigned to the object panel (by its background color). In this
case the displayed curves are  – taking a more  abstract view
point - the proper object of measurements.

DESCRIPTION AND USAGE OF SELECTED APPLETS

In this section we will present four applets that have been used
extensively during the course.  Besides the description of the
applets  the  focus  will  be  on  their  applicability  and  the
corresponding teaching goals.

Mathematical pendulum

This  applets  simulates  the  mathematical  pendulum  without
friction  and  driving  force.  Input  parameters  are  the  initial
conditions for the angle  and the angular velocity ̇ and the
only system parameter  g/l.  The oscilloscope shows the  time
functions  of angle  and  angular  velocity,  with  the  additional
possibility to reduce the angle to a basic interval of − to .

As a first step the applet is used with small  initial  angles to
remind  of  the  basic  features  of  linear  oscillators.  Then  the
different  kinds  of  movement  for  larger  initial  values  are
demonstrated.  The  increasing  influence  of  the  non-linearity
can best be seen by looking at the angular velocity, while the
graph  of  the  angle  looks  rather  “harmonic”  for  a  while.
Reaching initial angles near 180° the dependency of the period
on the amplitude becomes obvious. Adding an initial angular
velocity  leads  to  a  looping  movement,  which  can  be  the
starting  point  of  a  discussion,  whether  it  is  sensible  to use
angles larger than 360°.

Finally the students experiment with the applet to measure the
relationship between the period and the amplitude and display
their results graphically. If time and the mathematical skills of
the students allow, the instructor can derive the approximation
formula

T 0 ≈T 0 1 1
16

0
2 (2)

using the method of harmonic balance [9], and compare it with
the experimental results.

Figure 1 Applet „Mathematical Pendulum“
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Driven pendulum in phase space

The  next  applet  simulates  the  mathematical  pendulum  with
harmonic driving force, as given by the following equation of
motion (in dimensionally reduced form):

̈̇sin  =Acos ext t (3)

It contains the usual input controls for the initial conditions and
the three parameters , A and  ext. The x-y-oscilloscope shows
the angular  velocity over the angle  (phase space), where the
angle can again be reduced modulo 2. In the object panel the
driving force is represented by an arrow that is attached to the
pendulum mass. Length and direction of the arrow show the
momentary value of the force.

During  the  course the notion of phase  space  and the driven
pendulum have already been introduced. Its behavior has been
studied in the time domain, where the analysis is difficult. To
understand the complex motion, the two parameters  ext and 
are  fixed  in  the  following  (useful  values  being  =0.5,
 ext=0.6667) and the results of changing the amplitude A are
demonstrated.

Simple oscillations at A = 1.0 lead to an attractor in the form
of a “deformed ellipse”. For A = 1.07 the attractor splits into
two overlapping  curves,  which  is  a  clear  sign of the  period
doubling  phenomenon.  With  A =  1.22  one  has  reached  the
chaotic regime. To analyze its behavior one starts with a small
scaling factor of the oscilloscope and without reduction of the
angle.  This  clearly  shows  the  random  movement  between
regions with a different number of completed turns. Repeating
the  experiment  with  an  angle  that  is  reduced  to  2 and  a
normal scale one gets the well-known “strange attractor”. In a
guided  discussion the  students  now try to find  the  principal
difference  between  this  attractor  and  the  non-chaotic  phase
portraits.  The  instructor  summarizes  the  discussion  and
introduces  the  notion  of  “non-integral  dimension”,  without
giving  a  precise  definition.  This  could  be  done  in  a  later
lecture concentrating on fractals.

For the following “experiments” each group of students gets
their own values of  and  ext with the task to find the type of
motion for varying values of A and to look at the dependence
on the initial conditions. The final compilation of results again
illustrates the complexity of the chaotic system.

Poincare section

If  only  those  points  are  shown  in  the  phase  diagram  that
correspond to a  given  fixed  phase  angle   of the  harmonic
excitation, a subset of the complete phase portrait is shown that
is called a Poincare section. The next applet allows to enter the
three system parameters and the phase angle   and displays
the resulting phase image in an x-y oscilloscope occupying the
object panel. The interpretation of the result is made difficult
by  the  first  points  which  describe  the  transient  oscillations
before the attractor is (approximately) reached. To get rid of
these  points  the  applet  allows  to enter  a  delay  time  during
which they are suppressed. For larger delay times this leads to
a  starting  phase  during  which  apparently  nothing  happens.
Therefore the current simulated time is displayed in the output
panel so that the user can easily estimate when the first points
will appear.

After  a  short  explanation  of  the  function  of  this  applet  the
students  discuss  how the  basic  motion types  will  appear  as
Poincare  sections. Subsequently the results are  demonstrated
for the standard values of the parameters: A simple oscillation
leads to a single point, period doubling to two points, further
doublings  to four  etc.  The strange  attractor shows up in  the
Poincare section as a pattern of many points with interspersed
small  line  parts.  Again  this  brings  up  the  question  of  the
dimension of the curve.

The  students  now  check  the  results  of  their  previous
experiments  with  this  applet.  The  choice  of  the  delay  time
needs  special  care,  it  has  to  be  large  enough  to  skip  the
transient  phase,  especially  for  small  values  of  the  friction
coefficient  .  Another  point  to study is  the  influence  of the
phase  angle  .  After  some tests  it  should  be  clear  that  the
complete  image  of  the  attractor  is  the  combination  of  all
Poincare sections for the different values of .

Dependence on the initial conditions

The final topic of this course are the consequences of chaotic
behavior for the ability to make predictions. The corresponding
applet simulates two identical  driven pendulums, which start
with slightly different initial conditions. Its input values are the

Figure 3 Applet „Poincare Section“Figure 2 Applet „Driven Pendulum in Phase Space“
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three system parameters and the two initial angles, it displays
the angles of both pendulums and their difference as functions
of time. The oscilloscope occupies the whole object panel, it is
rather  large  to  increase  the  accuracy  which  is  principally
limited by the pixel size. 

To get a qualitative overview of the behavior the students start
by studying the divergence of the curves for different types of
motion and different initial conditions. They get the following
results:
• For a simple periodic oscillation the two curves converge

(at  least  modulo  2)  even  for  very  different  initial
conditions 

• If the oscillations have a doubled period, the pendulums can
have  different  motions,  but  the  difference  remains  small
after a transient period. Making the difference of the initial
conditions  small  enough  again  results  in  synchronous
motion.

• In the chaotic regime both curves diverge strongly after a
certain time. For smaller difference of the initial conditions
this time grows, but the divergence phenomenon remains.

These observations are the starting point for the introduction of
the  Lyapunov  exponent  and  the  prediction  horizon  making
precise the intuitive notion that chaotic systems defy long-time
predictions.  Using  the  applet  they  can  finally  by  measured
approximately for the driven pendulum.

CONCLUSIONS

Using applets for the presented course has several advantages:

• Listening to the lecturer is supplemented by own activity.
• Quantitative  relations  are  found  using  experimental

methods instead of formal theoretical reasoning.
• The students play an active part in finding the results, they

are working as researchers.
• A current physics topic can be presented, which arises the

student's curiosity.

The  basic  problems  are  the  huge  amount  of  work  and  the
profound Java programming knowledge needed to create such
applets. This task could be simplified substantially by using a
class library designed for physics simulation [13].To make the
most out of this effort one should use the internet to provide

categorized and commented collections of applets that are easy
to download and use in physics courses [5]
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Figure 4 Applet „Initial Conditions“


