
Pitfalls using discrete event blocks in Simulink and Modelica

Peter Junglas
PHWT Vechta/Diepholz/Oldenburg

peter@peter-junglas.de

Though Simulink as well as Modelica are basically tools for the modeling of continuous systems, they
both contain several elements that allow for discrete and hybrid modeling. Comparing the respective block
libraries one finds almost identically looking components, but this similarity is deceptive. Using simple
digital circuits with flip-flops as examples, one finds subtle differences in the handling of events, which
can lead to an unexpected behaviour of a model. A good understanding of the underlying mechanisms, es-
pecially of the Modelica standard description, is therefore essential for the successful modeling of discrete
systems. But even then it can be difficult to create models which have the required behaviour.

1 Introduction

Modern simulation programs with their graphical user
interfaces and large block libraries have simplified the
task of creating complex models considerably. Super-
ficially the basic procedure is almost identical even for
tools with very different philosophies like the signal-
oriented Simulink and Modelica-based physical mod-
eling programs [1] like Dymola. This can lead to
a concentration on the apparent block structure of
a model, disregarding details behind the scene like
solver properties or the defining language. That this
negligence can result in modeling errors that are hard
to understand will be shown in the following.

While Simulink and Modelica have their roots
strongly in continuous modeling, they both have ba-
sic discrete features, which can be enhanced with ad-
ditional packages for state machines [2, 3] or process
based models [4, 5]. Already the basic libraries con-
tain blocks like Memory and Unit Delay in Simulink
resp. Pre and UnitDelay in Modelica, which look
very similar – but their underlying mechanisms are
quite different.

In the following a few examples of simple digital cir-
cuits containing flip-flops will demonstrate that seem-
ingly identical models can lead to different results.
After a close look at the Modelica language specifi-
cation a detailed analysis of the models will explain,
why they behave differently from their corresponding

Simulink counterparts. Finally it will be shown how
to cope with the subtleties and create robust models of
flip-flops in Modelica.

Though all ideas presented here surely are well-known
to experts, the consequences of "well-known facts" are
not always self-evident. Therefore this study may be
useful not only for students (and teachers), but for
practitioners as well, especially when they are em-
ploying different simulation tools.

2 Simulating flip-flops in
Simulink and Modelica

Trying to model digital circuits containing flip-flops
is a rewarding endeavor, because it illustrates the in-
tricacies of discrete modeling in a nutshell. Though
the models presented in this section are quite simple,
some of them show a behaviour that probably may
come as a surprise.

2.1 The static RS flip-flop

The simplest flip-flop is the static RS flip-flop, which
is usually shown as two nor gates with crosswise con-
nected outputs. This can not be modeled directly, be-
cause it leads to an algebraic loop over discrete vari-
ables. To break it, one can simply add a “very short”



Pitfalls using discrete event blocks in Simulink and Modelica

delay, in Simulink using a Memory block for that pur-
pose (fig. 1).

P
2

!Q

1

Q
2

R

1

S
NOR

NOR

Memory

Figure 1: Static RS flip-flop (version A)

The results in fig. 2 (version A) show the behaviour
for all possible input combinations, including S = R
= 1 at t = 10, which is called forbidden, because the
corresponding outputs Q and !Q are inconsistent, i.
e. not inverse to each other. The delays can be seen
clearly, at t = 7 they lead to another inconsistency due
to the lag of !Q behind Q.

Figure 2: Simulation results of static RS flip-flops

Actually the delays are astonishingly large: The fun-

damental time period of the Simulink solver is set to
0.1, but the delay is 0.5. This value is inherited from
the blocks defining the input values S and R. With
some extra effort one can reduce it, but defining a very
small time step leads to long execution times, while
the inconsistency still remains – however shortly.

Therefore the Simulink block library contains a differ-
ent implementation of the RS flip-flop (fig. 3). Here
the delay block has been moved into the feedback
loop, while the generic Logic block implements the
needed boolean logic to compute the output values
from the S and R inputs and the “last” Q value. The
simulation results (fig. 2, version B) are now as re-
quired.

2

!Q

1

Q2

R

1

S

Memory

Logic

Figure 3: Static RS flip-flop (version B)

In Modelica one can reproduce the simple version A
using the Pre block to implement the delay – actu-
ally this RSFlipFlop is already included in the basic
Blocks library. It directly leads to the desired results
as in version B with no output delay at all! Appar-
ently, Simulink and Modelica work differently here.
With a little effort one can replicate version B as well,
but it simply reproduces the former correct results.

2.2 The triggered RS flip-flop

To cope with timing problems the triggered flip-flops
have an additional input, often denoted CLK, for syn-
chronisation purposes. The state of such a flip-flop
changes only, when this input changes in a predefined
way, e.g. from true to false (negative edge). Fig. 4
shows example signals for the inputs S, R and CLK and
the corresponding outputs Q and !Q. Basically the flip-
flop behaves like before, but the changes take place
only at the negative edges of the CLK input.

In Simulink such a flip-flop can be easily modeled by
adding a Trigger block to the subsystem of the static
RS flip-flop. This creates an additional trigger input



Pitfalls using discrete event blocks in Simulink and Modelica

for the block, which leads exactly to the required be-
haviour.

Figure 4: Simulation results of triggered RS flip-flops

In Modelica one can use the FallingEdge block to
replicate the Simulink model (fig. 5). At a negative
edge of its input signal it creates an “infinitesimally
short” output impulse, which unfortunately doesn’t
show up in result plots. That it is really working can
be seen in fig. 4, where its output Qa and !Qa show the
correct results – up to t = 10.5. At this point the CLK
triggers while the inputs have the “forbidden” com-
bination. Both outputs should be false now, but Qa
stays at true mysteriously.

Since the reason, why the simple static RS flip-flop
works, was puzzling anyhow, one could come up
with the idea of replacing it by the elaborated ver-
sion B, which even leads to a closer correspondence
with Simulink. This produces the results shown as
Qb and !Qb in fig. 4: It works up to t = 10.5, but
then instead of the correct results (false/false) or
the previous ones (true/false) it surprisingly goes
to false/true. What is going on here?

rSFlipFlop

R

S Q

Q!

CLK

1

fallingEdge

falling

and1

and
and2

and

S

R

Figure 5: Triggered RS flip-flop (Modelica)

The point is not that it is particurlarly important to
model the RS flip-flop at the forbidden state – in fact
in reality one ensures that this state can not appear,
e.g. with additional logic as in the JK flip-flop. The
real problem is that one would (naively) expect both
Modelica models to work, but they don’t. However,
one has no chance to understand these results looking
at the models only from the block level.

2.3 The shift register

The basic memory block is the D flip-flop, which has
only one data input D and a CLK input and stores the
data value at the negative edge of its CLK input. It
can be created easily from a triggered RS flip-flop by
identifying S with D and connecting its R input via a
NOT gate to D (fig. 6). Since the “forbidden” state is
ruled out here, one can hope that the Modelica version
will work as expected.

RSFlipflop

RS
not1

not

D

CLK

Q

Qb

Figure 6: D flip-flop

A simple shift register (fig. 7) will be used to test the
D flip-flop. The Simulink model shows the correct
behaviour: Each flip-flop delays its input signal by one
clock period, so that the incoming signal is “shifted”
through the register.

The corresponding Modelica model however doesn’t



Pitfalls using discrete event blocks in Simulink and Modelica

DFF1

D
DFF2

D
DFF3

D
DFF4

D

CLK

1

I

Figure 7: Shift register

work as requested (fig. 8): While the output of the
first flip-flop DFF1 is actually the delayed input, the
later flip-flops seem to “absorb” a single signal, so that
only longer blocks survive.

Figure 8: Simulation results of a shift register (Modelica)

Using version B of the static RS flip-flop inside the
model, one again gets different, but still wrong re-
sults: Though the output of DFF1 is still correctly
delayed, all other outputs coincide with DFF1 – the
signal runs through the register in one step! The
same thing happens incidentally, if one uses the
D flip-flop that is hidden in the Modelica library
Electrical.Digital.Examples.

In contrast to the triggered RS flip-flop, here one can
find an easy ad-hoc workaround: If one adds a Pre

block before each D input (optionally including the
first one, for symmetry) the shift register works per-
fectly.

3 Detailed analysis of the models

The Modelica results shown above seem to be proper
nonsense and the result of grave bugs of the simulation
program. But quite the contrary: They are completely
in accordance with the Modelica language specifica-
tion [6], as will be shown in the following.

3.1 A look at the Modelica language
specification

The handling of events in Modelica is quite compli-
cated, the relevant descriptions are scattered through-
out the standard document [6]. The basic definition of
an event is given in ch. 8.5 [6, p.92], but the most rele-
vant point for the current discussion is the clarification
of the pre operator:

pre(y)
Returns the “left limit” y(tpre) of variable
y(t) at a time instant t. At an event instant,
y(tpre) is the value of y after the last event
iteration at time instant t (. . . ).
. . .
A new event is triggered if at least for one
variable v “pre(v) <> v” after the active
model equations are evaluated at an event
instant. In this case the model is at once
reevaluated. This evaluation sequence is
called “event iteration”. The integration is
restarted, if for all v used in pre-operators
the following condition holds:
“pre(v) == v”. [6, p.29f]

The exact procedure is described with more detail in
an appendix [6, p.262f]. It has two important conse-
quences:

1. Discrete variables can run through several values
at a fixed time instant, if the event loop consists
of more than one iteration.



Pitfalls using discrete event blocks in Simulink and Modelica

2. pre(v) is the value of v at the preceeding itera-
tion, not the one before the first iteration (i. e. at
t−).

This is in contrast to the much simpler Simulink defi-
nition, where the previous value is related to time, i.e.
it is y(t−).

3.2 Understanding the static RS flip-flop

To thoroughly understand the behaviour of a discrete
model in Modelica, one has to go through the event
iterations manually and compute the values of all vari-
ables. For version A of the static RS flip-flop (fig. 1)
these are the two inputs S, R, the two outputs Q, !Q and
the input P of the Pre block (shown as Memory block
in the figure).

To understand, why the model has no time delay, it
suffices to look at the values around t = 3. To com-
pute them one starts with the known inputs S, R and
the value of !Q, which is given as the P of the “last”
step. This immediately gives Q and finally P. Table 1
displays all values, where t = 3− is before the event,
t = 3.x during the event loop and t = 3+ at the end.

t S R P Q !Q

3− 0 0 1 0 1

3.a 1 0 0 0 1

3.b 1 0 0 1 0

3+ 1 0 0 1 0

Table 1: Event iteration for the static RS flip-flop

The first line is given by the previous state of the flip-
flop, the next line reflects the change of the input S.
Comparing the two lines shows that P has changed,
i.e. P <> pre(P). This leads to a new event iteration
with the result shown in the third line. The change in
Q and !Q triggers another iteration giving the result in
the last line. This time nothing has changed, the it-
eration stops and the simulation time continuous with
these values.

This analysis clarifies the behaviour of the static flip-
flop: It works without output delays because of the
immediate re-evaluation after a change. In a similar
way one can make sure that version B works as well.

3.3 Understanding the triggered RS flip-
flop

For a detailed walk-through one starts with a labelling
of all signals, including those which are hidden inside
subsystems. The result for the triggered RS flip-flop
(version A) is shown in fig. 9.

S

R

T

PS1

R1
Q

!Q

CLK
booleanPulse

1

fallingEdge

falling

and1

and

and2

and

S

R

nor

nor

nor1

nor

pre

pre

Figure 9: Detailed view of the triggered RS flip-flop

The interesting point here is the wrong result for R
= S = 1, which happens at the negative edge of the
CLK input at t = 10.5 (cf. fig. 4). The computation
starts with the known inputs S, R, CLK and the value
of !Q, which is the last value of P. Using them one
immediately gets T, S1, R1 and Q and finally P. The
result is shown in table 2.

t S R CLK T S1 R1 P Q !Q

10.5− 1 1 1 0 0 0 0 1 0

10.5.a 1 1 0 1 1 1 0 0 0

10.5.b 1 1 0 0 0 0 0 1 0

10.5+ 1 1 0 0 0 0 0 1 0

Table 2: Event iteration for the triggered RS flip-flop

Before t = 10.5, the flip-flop is set, i.e. Q = 1 and P =
0, which fixes the first line. The next line shows the
change of the CLK input to 0, which sets T = 1 and all
other signals accordingly. The following iteration has
T = 0, cutting of S and R again and leading to another
iteration. Finally nothing changes, so the event loop
stops and the simulation time progresses again.

At 10.5a the “correct” output !Q = Q = 0 appears. A
real triggered system like in Simulink would now hold
its state until the next input trigger. But in Modelica
the event loop iterates again and changes the value of
Q back to 1. To understand why the flip-flop works
properly for other times, table 3 provides the compu-



Pitfalls using discrete event blocks in Simulink and Modelica

tations for t = 7.5. One easily assures oneself of the
correct working of the flip-flop at all other times and
of the – strange, but correct – behaviour of version B.

t S R CLK T S1 R1 P Q !Q

7.5− 0 1 1 0 0 0 0 1 0

7.5.a 0 1 0 1 0 1 1 0 0

7.5.b 0 1 0 0 0 0 1 0 1

7.5+ 0 1 0 0 0 0 1 0 1

Table 3: Event iteration for the triggered RS flip-flop, 2nd

example

3.4 Explaining the shift register

To understand the strange behaviour of the shift reg-
ister it suffices to examine a short version with two D
flip-flops in a row. Fig. 10 shows the detailed model
and all signal names.

T

I

S1

R1

P1 P2

Q1

S2

R2

P3 P4

Q2

CLK

booleanPulse

1

I and1

and

and2

and

not1

not

fallingEdge

falling

nor

nor

nor1

nor

pre

pre

and3

and

and4

and

nor2

nor

nor3

nor

pre1

pre

not2

not

Figure 10: Detailed view of a short shift register

As should be clear by now, one starts with I, CLK, P2
(last value of P1) and P4 (last value of P3), computes
T, S1, R1, S2, R2, Q1, Q2 and finally P1, P3. Using
the input values of fig. 8 leads to the results shown in
table 4.

It is now obvious, why the shift register doesn’t work
as intended: At event iteration 4.5.a the first flip-flop
is already reset, i. e. Q1 has the value 0. But also at this

t I CLK T S1 R1 P2 Q1 P1 S2 R2 P4 Q2 P3

3.5− 1 1 0 0 0 1 0 1 0 0 1 0 1

3.5.a 1 0 1 1 0 1 0 0 0 1 1 0 1

3.5.b 1 0 0 0 0 0 1 0 0 0 1 0 1

3.5+ 1 0 0 0 0 0 1 0 0 0 1 0 1

4.5− 0 1 0 0 0 0 1 0 0 0 1 0 1

4.5.a 0 0 1 0 1 0 0 1 0 1 1 0 1

4.5.b 0 0 0 0 0 1 0 1 0 0 1 0 1

4.5+ 0 0 0 0 0 1 0 1 0 0 1 0 1

Table 4: Event iteration for the shift register

point the flip-flops are unlocked, i. e. T is 1. Therefore
the second flip-flop gets the new value of Q1, not the
old one. This makes plausible that an additional Pre
block might cure the problem. To make sure though,
one has to go through another manual computation.

4 Solution of the problems

The last section has shown, how to explain the strange
behaviour of the flip-flop example models in the con-
text of Modelicas event system. But this doesn’t help
with the task of creating reliable, easy to use flip-
flop components, because there is apparently no way
to implement a triggered system with the semantics
that is needed here – at least using Modelicas standard
events.

Similar problems have been found in a completely dif-
ferent application area, namely the modeling of reli-
able state machines [3]. They have been solved there
by extending the Modelica language itself: Version
3.3 contains features for synchronous signals that are
tied to discrete clocks [7]. A corresponding block li-
brary has been created that allows to include these fea-
tures easily in a graphical environment [8].

Fortunately the new possibilities are exactly what is
needed to create a properly working triggered flip-
flop. Fig. 11 shows an implementation based on the
new Synchronous library. The Sample and Hold
blocks transfer standard signals to synchronous ones
and vice versa. The EventClock creates a clock sig-
nal that is triggered by a positive edge of its input.



Pitfalls using discrete event blocks in Simulink and Modelica

eventClocknot1

not

sample1

sample2

Q0

hold1

not Q0

hold2

rSFlipflopStaticC

R

S Q

Q!

S

CLK

Q

QIR

Figure 11: Triggered RS flip-flop with clock

But the main point is hidden inside the static RS flip-
flop (fig. 12): Though it looks almost exactly like the
version B of the static flip-flop (fig. 3), instead of a
Pre block it now contains the new UnitDelay block.
It returns the value of its clocked input signal at the
previous time step, not at some mysterious event loop
iteration.

booleanMultiplex3_1 logicTable

T
T

T T

F
F

F F

booleanDemultiplex2_1

UnitDelay1

1
z

y_start=false

Q

QI

S

R

Figure 12: Static RS flip-flop with clock

Since the semantics of the blocks and signals are now
identical to their Simulink versions, so are the results:
The flip-flop works as expected, even at the “forbid-
den” state, and the shift register built from it properly
shifts its input.

5 Conclusions

Modelica’s event system is complicated – to say the
least. This can lead to models that behave very dif-
ferently to what one might expect, especially if one
has worked with Simulink before. The main culprit
is the pre operator – or corresponding block – that is
not defined in a strictly temporal sense, but relates to
a previous iteration of the event loop.

The good news is that the Synchronous library and
its underlying Modelica constructs add just the kind of
temporal semantics that one needs e. g. for the model-
ing of flip-flops or state machines. This could be used
to complement the Digital library with still missing

standard flip-flop components.

But the crucial point to bear in mind is: Even with
todays sophisticated graphical simulation tools mod-
eling is more than connecting blocks from a library!
Without a thorough understanding of the underlying
mechanisms one is on murky ground, and simulation
results may be correct just by pure luck.

Acknowledgements

The author is thankful to Fabian Köslin from Dassault
Systemes for helpful discussions about the intricacies
of the Modelica event system.

The author is grateful for the hospitality extended to
him by Tom Schramm and his colleagues at the De-
partment of Geomatics, HCU Hamburg.

References

[1] P. A. Fritzson. Principles of Object-Oriented
Modeling and Simulation with Modelica 3.3.
Wiley & Sons, New York, 2015.

[2] The MathWorks. Stateflow: Model
and simulate decision logic using state
machines and flow charts. Online:
http://www.mathworks.de/products/stateflow/
(called 2015-11-25).

[3] H. Elmqvist, F. Gaucher, S. E. Mattsson, F.
Dupont. State Machines in Modelica. Proc. 9th
Int. Modelica Conference, Munich, p. 37-46,
2012.

[4] The MathWorks. SimEvents: Model and
simulate discrete-event systems. Online:
http://www.mathworks.de/products/simevents/
(called 2015-11-25).

[5] V. Sanz, A. Urquia, S. Dormido. Parallel DEVS
and Process-Oriented Modeling in Modelica.
Proc. 7th Int. Modelica Conference, Como, p.
96–107, 2009.

[6] Modelica Association. The Modelica Language
Specification Version 3.3 Revision 1, July 11,
2014. Online: https://modelica.org/documents/



Pitfalls using discrete event blocks in Simulink and Modelica

ModelicaSpec33Revision1.pdf (called 2015-11-
27).

[7] H. Elmqvist, M. Otter, S. E. Mattsson. Funda-
mentals of Synchronous Control in Modelica.
Proc. 9th Int. Modelica Conference, Munich, p.
15-26, 2012.

[8] M. Otter, B. Thiele, H. Elmqvist. A Library for
Synchronous Control Systems in Modelica. Proc.
9th Int. Modelica Conference, Munich, p. 27-36,
2012.


