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Abstract

Fundamentals  of  quantum  mechanics  are  part  of  most  physics  curricula  for  engineering 
students. For the teacher this is a quite nontrivial didactical task, since the mathematical tools 
necessary for a deeper understanding are much too advanced and the phenomena themselves are 
mind-boggling.  Simulation  programs  can  be  useful  here  by  illustrating  the  behaviour  of 
quantum mechanical systems and allowing a hands-on approach. Several example applets will 
be presented that solve the two-dimensional Schrödinger equation to help understand notions 
like uncertainty, the tunnel effect and energy eigenstates.

Quantum mechanics for engineering students

Fundamentals of quantum mechanics are a standard part of the physics education for 
engineering  students.  Since  the  mathematical  tools  necessary  for  the  description  of 
quantum systems are too advanced,  teachers have to resort  to some basic ideas and 
presentation  of  results  without  derivations.  Furthermore  due to  the often perplexing 
quantum phenomena students have problems to create any intuitive pictures or to make 
contact to their knowledge about “classical” systems.

To remedy this situation several authors have produced tools to simulate and visualise 
quantum systems,  among them two very comprehensive packages: Physlet  Quantum 
Physics (Belloni (2006)) and the Visual Quantum Mechanics project (Thaller (2000)). 
The first provides a large number of simulation programs ready for interactive use in the 
form of applets embedded in web pages, the second consists of an overwhelming set of 
animations describing mostly two-dimensional systems on a high level.

Especially the two-dimensional examples are very helpful since they can be compared 
to  standard  wave tank simulations.  Studying  a  properly chosen set  of  examples  the 
students can understand, where classical pictures still work, and where they have to be 
modified by new ideas, most importantly the uncertainty relation. Unfortunately most of 
the Physlets present one-dimensional systems – the few exceptions relying on analytical 
solutions  –  ,  whereas  the  animations  from Thaller  (2000)  are  not  interactive.  This 
restriction is due to the large amount of computations necessary for a numerical solution 
of the Schroedinger equation.

But with better algorithms and the always growing performance of standard PCs the 
situation has changed. As part of the PhysBeans project (Junglas (2008)) programs have 
been developed that  compute the solution of the 2d Schroedinger equation in “real-
time”, i.e. as fluently running animations with variable parameters. The example applets 
presented in the following will show how they allow a hands-on approach to several 
standard topics of a quantum mechanics course.
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Simulating the Schrödinger equation

The Schroedinger equation describes the time evolution of the wave function ψ(x,t) of a 
particle in Rn in a potential V(x). In properly chosen units it reads
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One is mainly interested in solutions ∈L2R
n  with an L2-norm of one. The square 

of the absolute value |ψ(x,t)|2 can then be interpreted as the probability distribution of 
the particle.

The  algorithm for  the  numerical  solution  of  the  Schroedinger  equation  used  in  the 
applets is based on the method given in DeRaedt (1994). To get rid of reflections at the 
boundary it  has been augmented  by a PML boundary layer  (Antoine (2008)).  More 
details  about  the  implementation  are  given  in  Junglas  (2009).  The  visualisation  of 
complex wave functions is a non-trivial task, which is discussed extensively in Thaller 
(2000). Its author favours a clever combination of amplitude and phase  representation. 
The interactivity  of  the programs presented here allows for  a  more  straight-forward 
approach:  The  user  can switch  between several  representations  (real/imaginary  part, 
absolute value, square of the absolute value, phase) to get the most information from the 
wave function.

Example Applets

The following programs are all built up from the same elements:

• a  display showing the  two-dimensional  wave function  for  immediate  qualitative 
understanding of the phenomena,

• a  graph  of  the  wave  function  along  a  line  in  the  x-y  plane,  allowing  to  make 
accurate “measurements”, or alternatively values of some observables as functions 
of time.

• a set of input elements for changing physical or visualisation parameters and control 
of the simulation.

The free particle

The first example shows the behaviour of a Gaussian wave packet with given initial 
position,  velocity  and  width.  This  is  as  close  to  the  intuitive  picture  of  a  slightly 
“smeared”  particle  as  one  can  get.  The  time  evolution  shows  mainly  the  classical 
behaviour: The packet moves along a straight line with the given velocity.  Quantum 
mechanics shows up in the spreading of the wave function which is due to the range of 
velocities that are inherent in the Gaussian.The spreading gets faster with smaller initial 
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width. In a hands-on session the students are asked to quantify this behaviour, which 
leads to a first glimpse at the Heisenberg uncertainty relation.

The uncertainty relation for a free particle

After the notions of position and momentum uncertainty have been introduced, the next 
program displays  their  explicit  values  as  functions  of  time  for  the  Gaussian  wave 
packet.  Here  the  students  can  experiment  with  the  packet  to  find  the  minimal 
“combined” uncertainty  Δx·Δp and thereby reproduce the Heisenberg relation.   One 
could use additional programs with different initial  functions to show the distinctive 
minimisation properties of the Gaussian wave packet.

Another point to notice here is the behaviour of the displayed values when the wave 
function leaves the simulated area: The uncertainties drop to much too small values, 
which  violate  the uncertainty relation.  This  is  an artefact  of  the numeric  algorithm, 
which can only use the part of the wave function still inside the computed area.

This  observation  can  be  a  good  starting  point  to  discuss  intrinsic  limitations  of 
simulation  programs.  On the  other  hand it  can  be  too  demanding  for  students  who 
already struggle with the peculiarities of quantum mechanics. For that reason it might 
be a good idea to introduce a stop time and to constrain the parameters of the program 
accordingly.  Due to the modular structure of the programs and the availability of the 
source code this can be done easily (Junglas (2008)).

The double-slit

The famous  double-slit  experiment  is  especially  bewildering  when done with single 
photons. This applet shows what happens with a single electron – modelled as usual by 
a Gaussian wave function – that is going through a double-slit (cf. Fig. 1).

The resulting simulation shows a wealth of features: First one notices an interference 
pattern in front of the slits that is due to reflections. The students are already familiar 
with this behaviour from a previous example. Next one sees two “bubbles” coming up 
immediately behind the slit, which is more or less what one would expect. But after a 
while a third bubble appears in the middle, which together with the other two develops 
into the well-known interference pattern at the screen.

To better understand where this central part comes from, one can study the example 
again, this time looking at the real part of the wave function instead of the absolute 
value. The emerging pattern should be familiar from classical wave theory, it resembles 
the diffraction pattern stemming from Huygens principle  and shows how the central 
maximum is produced by “bending around the corner”.

Many  more  interesting  features  can  be  studied  by  varying  the  parameters.  Most 
important  probably  is  the  increase  of  the  number  of  maxima  with  rising  particle 
velocity,  which is best seen in the backwards scattering.  Classically this comes as a 
surprise, but a moments (quantum-mechanical) thought reveals the cause: With rising 
velocity  –  and  therefore  momentum  –  the  Compton  wavelength  of  the  electron 
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decreases, which leads to smaller  scattering angles,  just as in classical  wave theory. 
Again, this can be seen directly in the real part image.

Particle running against a potential barrier

The next example deals with a particle running against a potential barrier  (cf. Fig. 2). 
The  simulation  shows  the  splitting  of  the  wave  function  into  a  transmitted  and  a 
reflected part. Thinking of EPR and entangled states it might be tempting to expand 
here on the interpretation of a “bilocalised” state, but this is probably too advanced and 
causes more confusion than it provides deeper understanding. Therefore the situation is 
interpreted only in a statistical way.

In exercises students try to “measure” the transmission coefficient as function of the 
incoming velocity or the potential. The results are compared to the classical situation, 
which leads to the discovery of quantum tunneling.

Eigenfunctions of the 2d Coulomb Hamiltonian

Understanding the eigenstates of the hydrogen atom provides the basis of the modern 
understanding  of  atoms,  including  the  whole  of  chemistry  and  material  sciences. 
Therefore  it  is  one  of  the  major  goals  of  an  exposition  to  quantum  mechanics. 
Unfortunately it is not so easy with its complicated scheme of quantum numbers and 
complex spherical harmonics.

Here, the two-dimensional Coulomb potential comes in handy: Its eigenfunctions are 
much simpler and easier to visualise, but share many features with its famous 3d-cousin. 
The  energy level  is  given  by a  “main  quantum number”  n,  the  quantisation  of  the 
angular momentum Lz leads only to one additional  quantum number m with simple 
eigenfunctions and m < n.

4

Figure 2: Potential barrierFigure 1: Double slit
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These properties can be studied with an applet, which allows to enter values for n and m 
and displays the corresponding eigenfunction (cf. Fig. 3) . The restriction m < n is not 
enforced by the design of the user interface, instead an invalid choice produces a blank 
screen in order to draw the student's attention to the restriction. In addition one can enter 
an arbitray real value for the central charge. This is a simple way to scale the image and 
to provide a better resolution of the central parts.

The time evolution shows the constance of |ψ|2, the images of the real or imaginary part 
simply rotate – at least for some values of n and m. Unfortunately one easily runs into 
numerical  problems  here:  If  the  function  extends  to  the  border,  one  gets  boundary 
reflections; if it extends into the center, all kinds of artefacts show up, since the grid is 
too coarse to properly cope with the 1/r potential.  Again, this can be turned into an 
advantage by making the students aware of the limitations of the simulation.

“Particle” states in the 2d Coulomb potential

The last simulation (cf. Fig. 4) tries to transfer the notion of a “classical particle” to the 
Coulomb case.  Preliminary  experiments  with  a  Gaussian  initial  state  show a  rather 
complicated behaviour, which bears very little resemblance to a classical picture. If one 
uses a gaussian spreading in polar coordinates instead, the results are more amenable to 
a quasi-classical interpretation.

The default  parameters define a state that is concentrated around a given radius and 
spreads over a rather large angle. Furthermore it has a given mean angular momentum, 
which corresponds roughly to that of an eigenfunction that is concentrated in the same 
radial  region.  Starting  the  simulation  one  sees  mainly  a  rotation  around the  center, 
combined with a spreading in angular direction, until almost a whole annulus is filled 
up. This could vaguely be interpreted as a classical circular motion combined with a 
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Figure 3: Coulomb eigenfunction Figure 4: Coulomb “particle” state
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spreading caused by the uncertainty in Lz. The students can work this out further by 
measuring the orbital period and compare it with the given value of Lz.

For  larger  values  of  Lz the  wave function  rapidly  moves  outwards,  like  a  classical 
particle would do. For much smaller Lz it approaches the center, where strange things 
happen, only partly because of the inaccurate simulation. If one tries to concentrate the 
particle in radial or angular direction, it blows up rapidly – the uncertainty relation takes 
its toll!

Conclusions

The simulation  programs presented here demonstrate  the general  behaviour  of wave 
packages and illustrate  some basic notions of quantum mechanics.  Furthermore they 
provide a set of examples, on which a first intuition about quantum behaviour can be 
based.  Finally  they  show  how  previous  knowledge  about  classical  behaviour  (of 
particles  and waves)  can be put  to  good use if  one augments  it  by the uncertainty 
principle.

An important feature is the two-dimensionality of the examples: On the one hand the 
corresponding animations are more easily interpreted as the graphs of one-dimensional 
functions, on the other hand they allow for generic 2d-examples like the double-slit or 
the Coulomb problem.

The set of examples will be expanded in the near future to cover the standard situations 
discussed  in  introductory  courses.  Further  extensions  will  be  the  simulation  of  the 
measurement process (or better: models thereof), the addition of electric and magnetic 
fields and of the electron spin. All programs are provided under standard open source 
conditions and can be downloaded from the PhysBeans homepage (Junglas (2010)).
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