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Abstract

Finding the equations of motion of a mechanical system is a difficult task for students even in

simple cases - much more for the complicated three-dimensional systems studied in multibody

dynamics. Using a modern simulation program this task is transferred to the software. Two

simple examples will show how the equations of motion are built up systematically by using the

equations of the components and simple connection rules. With enough perseverance students

can do this manually. Besides basics in mechanics they need a good working knowledge of

"abstract" linear algebra, which proves here to be of eminent practical use.

Multibody simulation

Simulating  mechanical  systems  with  standard  programs  that  are  based  on  signal

processing block libraries is an interesting and basically simple task for students – as

long as one knows the underlying equations of motion. To find them students usually

have  a  rather  restricted  toolbox:  They  mainly  rely  on  d'Alembert's  principle  in

combination with a free body diagram. This is often not sufficient even for apparently

simple examples, not to mention systems of three-dimensional solid bodies connected

by joints, which are the main subject of multibody dynamics (Wittenburg (2008)).

Here modern simulation programs based on “physical modelling” come to the rescue:

Their building blocks are models of simple physical systems, the connections between

them are abstractions of real flanges, wires or pipes transporting physical properties in

both  directions.  In  the  widely  used  Modelica  language  the  components  and  their

connections define equations, which are assembled by the simulation program to get the

equations of motion automatically (Fritzson (2004)). The two examples presented in the

following will  demonstrate how this works in practice,  even for multibody systems.

This not only show the students how these programs work, but adds another method to

their “equations of motion” toolbox.

Prerequisites

The physical relations that are used in the MultiBody library (basic dynamics and the

Euler equation) are presented in mechanics lectures, a working skill with vector and

matrix  computations  should result  from linear  algebra  lessons.  Usually  lacking is  a

deeper understanding of rotation matrices. Particularly the following three relations are

generally unknown to the students and have to be presented beforehand – and proven, if

time admits:

• computing a rotation matrix from a fixed axis n and rotation angle φ

R=n⋅n '+(1�n⋅n ' )cosϕ�ñ sinϕ
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• writing the cross product as a matrix (i.e. hiding the Levi-Civita tensor ε)

ã :=(
0 �a3 a2

a3 0 �a1

�a2 a1 0 ) ⇒ a×b=ã⋅b

• computing the angular velocity ω from a time variant rotation matrix R(t)

ω̃ωωω=R⋅Ṙ '

Physical modeling with Modelicas MultiBody library

Simulation software implementing Modelica usually comes with a graphical editor that

allows to build models by connecting predefined building blocks. They define a set of

variables and equations between them together with parameters that are fixed during the

simulation.  The  components  have  connection  points  (“Connectors”)  that  define  the

physical  quantities  of  the  block  that  can  be  accessed  externally.  They  come  in

(basically) two classes: potential variables are identical at connection points and flow

variables add up to zero. These relations are added to the predefined equations of each

block to make up the equations of motion for the model (Fritzson (2004)).

In  the  Modelica  MultiBody library  a  connector  describes  a  local  coordinate  system

(frame) relative to a globally given inertial system world. For this purpose it defines

as potential variables the vector r that connects the origins of world and frame and

the  orthogonal  matrix  R that  rotates  world into  frame,  both  defined  in  world.

Corresponding flow variables are the cut force  F and the torque  M at the connection,

both given in  frame. In the following we will count  R simply as three independent

variables. Internally it is given by its nine matrix elements together with six constraints

given by its orthogonality (Otter (2003)).

For the two example models we need six different components (cf. Fig.  1) and their

equations, which are given directly by the functionality of a block and basic mechanical

relations:

a) World supplies the global world frame and the gravity acceleration g

Figure 1: MultiBody components
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r 1=0 R1=1

b) FixedTranslation contains two frames with a relative displacement d

r2=r1+R1 '⋅d F 2=�F 1

R2=R1 M 2=�M 1+d xF1

c) Body describes a rigid body of mass m and moment of inertia J. Additionally it

contains the internal variables v for the velocity and ω for the angular velocity.

v=ṙ 1 F1=R1m( v̇�g)
ω̃ωωω=R1⋅Ṙ1 ' M 1=J ω̇ωωω+ωωωω×(J ωωωω)

d) Revolute is a joint that allows a rotation around a fixed axis n. Additional 

variables are the rotation angle φ and the relative rotation matrix Rrel between its 

two frames.

R rel=n⋅n'+(1�n⋅n' )cosϕ�ñ sinϕ F 2=�Rrel⋅F 1

r2=r1 M 2=�Rrel⋅M 1

R2=R rel⋅R1 0=M 2⋅n

e) Prismatic permits a linear displacement of its two frames along a fixed 

direction n. The internal variable s describes the amount of the displacement. An

extra input can be used to bring in an external force f along the axis.

r2=r1+sR1 '⋅n F 2=�F 1

R2=R1 M 2=�M 1+s n xF 1

f=�F2⋅n

f) Torque relays an externally given torque Mext into the system.

F1=0 M 1=M ext

F 2=0 M 2=�(R2⋅R1 ' )⋅M ext

Example: robot arm

The first example is a simple model of a robot arm that is driven by an external torque,

supplied  e.g.  by  a  servo  motor.  A  corresponding  Modelica  model  can  be  easily

assembled using the components described above (cf. Fig.  2). The parameters of the

model are fixed as

g=(
0

�g
0 ), n=(

0

0
1), d=(

d

0
0), M=(

0

0
M z

), J=(
J x 0 0

0 J z 0

0 0 J z
)
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Collecting all component and connection equations one gets the following rather huge 

system:

r1=0 (1)
R1=1 (2)

F3=0 (3)

F6=0 (4)
M 3=M (5)
M 6=�R6⋅R3 '⋅M (6)

R rel=n⋅n'�ñ sinϕ
+(1�n⋅n ' )cosϕ (7)

r2=r4 (8)
R4=R rel⋅R2 (9)
F 4=�Rrel⋅F 2 (10)

M 4=�R rel⋅M 2 (11)
0=M 4⋅n (12)

r7=r5+R5 '⋅d (13)
R7=R5 (14)

F7=�F5 (15)

M 7=�M 5+d×F 5 (16)
v=ṙ 8 (17)
ω̃ωωω=R8⋅Ṙ8 ' (18)
F8=R8⋅m(v̇�g ) (19)

M 8=J ω̇ωωω+ωωωω×J ωωωω (20)
r1=r2 (21)

r1=r3 (22)

R1=R2 (23)
R1=R3 (24)

F1+F2+F 3=0 (25)
M 1+M 2+M 3=0 (26)

r4=r5 (27)

r4=r6 (28)
R4=R5 (29)
R4=R 6 (30)
F 4+F 5+F 6=0 (31)

M 4+M 5+M 6=0 (32)
r7=r8 (33)

R7=R8 (34)

F7=�F8 (35)
M 7=�M 8 (36)

The total number of (scalar) equations is 35x3 + 1 = 106, the number of variables is

8x4x3 + 3x3 + 1 = 106. One starts by eliminating as many variables as possible using

the trivial equations and gets

Figure 2: Model robot arm
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r1=0 (1)
r 2=0 (21)

r 3=0 (22)
r 4=0 (8)

r5=0 (27)
r 6=0 (28)

R1=1 (2)
R2=1 (23)

R3=1 (24)

R4=R rel (9)
R5=Rrel (29)

R6=Rrel (30)
R7=Rrel (14)

R8=Rrel (34)
r7=Rrel '⋅d (13)
r8=R rel '⋅d (33)

v=Ṙrel '⋅d (17)

F8=m Rrel (R̈rel '⋅d�g ) (19)

F7=�mR rel (R̈rel '⋅d�g ) (35)

F6=0 (4)

F5=m Rrel (R̈rel '⋅d�g ) (15)

F 4=�m Rrel (R̈rel '⋅d�g ) (31)

F3=0 (3)

F 2=m (R̈rel '⋅d�g ) (10)

F1=�m (R̈rel '⋅d�g ) (25)

M 3=M (5)
M 6=�RrelM (6)

For further simplification one chooses e. g. M8 and M5 as basic and eliminates all other

torques:

M 7=�M 8 (36)
M 4=�M 5+Rrel⋅M (32)

       
M 2=Rrel '⋅M 5�M (11)
M 1=�Rrel '⋅M 5 (26)

This leaves the variables Rrel, φ, ω, M5 and M8 together with the equations

R rel=n⋅n'+(1�n⋅n' )cosϕ�ñ sinϕ (7)
ω̃ωωω=Rrel⋅Ṙrel ' (18)

M 8=J ω̇ωωω+ωωωω×J ωωωω (20)

M 5=M 8+md×Rrel ( R̈rel '⋅d�g ) (16)

0=n⋅(RrelM�M 5) (12)

Using the explicitly given parameter values the equations are simplified substantially 

and one arrives at

R rel=( cosϕ sin ϕ 0

�sin ϕ cos ϕ 0

0 0 1
), ωωωω=ϕ̇(

0

0
1), M 8=J z ϕ̈ (

0

0
1)

M 5=[(J z+md
2)ϕ̈+md g cosϕ ](00

1
), (J z+md

2) ϕ̈+md g cosϕ=M z

The variable φ is the angle of the joint, it is zero at horizontal position. Introducing 

instead the angle θ against the vertical, one finally gets the well known result

(J z+md
2)θ̈+md g sinθ=M z
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Example: gantry crane

The  second  example  is  a  simple  model  of  a  gantry  crane.  Getting  its  equations  of

motion with a free body diagram is usually too difficult for the students, but a simple

Modelica model can be obtained easily (cf. Fig 3). The parameters are given like before.

Using  the  equations  of  the  components  and  adding  the  relations  defined  by  the

connections, one gets 29x3 + 2 = 89 equations for 6x4x3 + 5x3 + 2 = 89 variables. After

a simple, but tedious, computation along the lines of the first example, the equations can

be reduced to

(m+M ) s̈�(md sinϕ )ϕ̈= f +md ϕ̇2
cosϕ

(�sin ϕ) s̈+d ϕ̈=�g cosϕ

By introducing the angle θ to the normal direction and isolating the second derivatives,

one easily brings these equations into the standard form:

s̈=
f +(g cosθ+d θ̇2)msinθ

M+msin
2θ

θ̈=�
f cosθ+M g sinθ+(g+d θ̇2

cosθ)msinθ

d (M +m sin
2
θ)

If the students already know the Euler-Lagrange method, one can apply it here to obtain

the same result in a shorter way. But this requires a deeper understanding of the physics,

especially the formulation of the energies.

Conclusions

What is the use of such tedious computations? First of all they help to demystify the

simulation  software  and  make  the  “black  box”  translucent.  Next  they  are  a  good

exercise  for  the  students  who  are  often  not  used  to  cope  with  simple  but  long

Figure 3: Model gantry crane
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calculations and can get some practice here. Furthermore they show another method to

obtain the equations of motion, which is often a difficult problem. Finally they prove

that linear algebra is not just another abstract mathematical theory but has very useful

applications in mechanical engineering.
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