
27

Peter Junglas

Mathematical Problems due to Oversimpli�-
cation

Abstract. An important step in modeling is simpli�cation: A model should contain

only those aspects of a system that are relevant for the modeling purpose. But some-

times the exclusion of seemingly unimportant physical details leads to models that are

mathematically ill de�ned and cannot be simulated. In such cases it can be helpful to

include a rudimentary version of the omitted physics. Using four examples from dif-

ferent application areas it will be shown, how this can be done e�ciently and without

the introduction of lots of additional parameters, for which proper values would have

to be supplied.

Introduction

The modeling of a technical system always begins with the reduction of its
complexity. This serves several purposes: First of all, it reduces the size
of the model and the simulation time. More important is the decrease in
the number of parameters one has to supply. However, the fundamental
point is the simplicity of the obtained model, which allows to identify the
core mechanism of the problem under study.

But in some cases this crucial step leads to models which are di�cult
to simulate. A typical error message in Simulink would be

Cannot solve algebraic loop,

whereas in a Modelica-based environment one encounters the notorious
message

Failed to reduce the DAE index.

While a novice modeller might suspect a bug in the simulation pro-
gram, more experienced modellers look for a bug in their own model. But
the real problem may lie in the mathematical description of the model
and is often hard to �nd. The cause of the problem might be a case of
oversimpli�cation: Some physical details have been erased, because one is
not interested in them, but the resulting mathematical representation of
the model becomes incomplete or inconsistent.



28

A simple remedy seems to be to �x the mathematical problem, but
this can be di�cult to implement in a given simulation environment or
may lead to unphysical behaviour. Often, a better approach is to �x
the physics of the model by adding additional elements. This can make
the mathematical problems disappear, but leads to new challenges: The
expanded model requires (often lots of) new parameters that are unknown
and in which one is not interested. Therefore, one needs a simple model of
the missing physics that is su�cient to cure the mathematical description
without introducing too many new quantities.

In the following, we will describe four examples of oversimpli�cation
from very di�erent applications and show, how they can be �xed without
introducing a lot of additional details.

Example 1: RS Flip-�op

The �rst example is the RS Flip-�op, a basic digital storage element with
two inputs (S, R) and two outputs (Q, Q̄) (Figure 1). Its behaviour is

R

S Q

Q

Figure 1: RS Flip-�op.

given by the following table:

S R Q Q̄ Remark
1 0 1 0 store is set (i. e. 1 is stored)
0 1 0 1 store is reset (i. e. 0 is stored)
0 0 hold hold last value is hold (stored)
1 1 0 0 forbidden!

Using standard electronic elements, it can be built with OR and NOT
gates in an astonishingly simple way (Figure 2).

To model an RS Flip-�op in Simulink, one can utilize the OR and
NOT components from the Simulink standard library to implement it di-
rectly along the lines of Figure 2. But after providing some additional input
and output elements, running the model leads to the error message



29

1

R

2

S

1

Q

2

Qbar

Figure 2: Simple implementation of an RS Flip-�op.

Error: Cannot solve algebraic loop involving

'rsflipflopA/RS flip-flop/Or2' because it consists of

blocks that cannot be assigned algebraic variables ...

Consider breaking the algebraic loop. For example,

add a delay or a memory block to the loop ...

The mathematical problem leading to this error is the simple fact
that for input values S = R = 0 the model can have two possible output
values for (Q, Q̄) � namely (0, 1) or (1, 0) according to the previously stored
value.

The real electronic system works well, but shows an interesting ini-
tialization behaviour: If one switches it on with input values S = R = 0,
the output value is random between di�erent circuits, but generally con-
stant for a given one. The reason for this behaviour is the obvious fact
that the transport of physical signals needs time. Depending on complex
details like inhomogenities in the semiconductor crystals that make up
the components, the internal delays vary between di�erent circuits, which
makes one or the other of the two outputs �win�.

These considerations � and the error message above � suggest that
one can solve the simulation problem simply by adding a Memory compo-
nent to the model (Figure 3), which introduces a small delay. The improved
model works as requested, even without de�ning an additional parameter,
and the initial output value can be set inside the Memory block.

A possible problem may be that the actual delay is de�ned by the
ODE solver and might be larger than expected. A slightly more elabo-
rate model that is available in the Simulink standard library [1] cures this
behaviour.



30

1

R

2

S

1

Q

2

Qbar

Figure 3: Working implementation of an RS Flip-�op.

Example 2: Gear Shift

In the �eld of automotive engineering, an important task is the modeling
and simulation of a drive train, which consists of all parts that transport
the power from the engine to the wheels. An important component is the
manual transmission, which allows to change the ratio of rotational speeds
from motor and drive shaft. It usually provides a few �xed ratios (�gears�)
and has a complex internal structure (Figure 4).

Figure 4: Eight speed transmission [2].

A corresponding drive train model using Modelica has been studied
in the text book [3]. For simplicity the model has been reduced here
and ends after the drive shaft and a �nal inertia, which represents all
further parts such as a di�erential gear and wheels (Figure 5). The basic
component of the gear shift model is a simple variant of the IdealGear

from the Modelica Standard Library. It has two connectors describing
torque τ and angle φ on each side and an additional input that speci�es



31

Figure 5: Simpli�ed drive train model.

the transmission ratio r, and it de�nes the usual equations

τi
τo

= −1

r
,

φi

φo
= r .

The complete gear shift model adds inertias on both sides and a table
that computes the ratio from the gear (Figure 6). Running the model in

Figure 6: Simple gear shift model.

Dymola works perfectly well, as long as the gear is constant. But when
the model describes a gear change, the simulation doesn't start, but the
error message Failed to reduce the DAE index is displayed.

Again, the origin of the error is a mathematical problem: When the
gear changes from r1 to r2, the rotational speeds on the input and output
side of the transmission have to change from ωi/ωo = r1 to ωi/ωo = r2. But
their start values after the event are not de�ned anywhere in the model.
A simple solution would be to �x one of the two ω values and compute the
other one, but this often leads to an unrealistic behaviour of the model.



32

That the speeds at the two sides of the transmission have to be
adapted during a gear shift, is a real-world problem. In older cars, the
driver had to change one speed manually, a technique called �double-
clutching�. A modern transmission uses synchronizer rings to adapt the
rotational speeds using friction � basically, they work like tiny clutches. As
a result, the speeds adapt dynamically, mainly according to the connected
inertias on both sides.

The improved gear shift model implements this idea in a very sim-
ple way: The gears are given by �xed IdealGear components and are all
connected to the engine via clutches (Figure 7). The clutch of the current

Figure 7: Improved gear shift model.

gear is closed, all other clutches are completely disengaged. A shift-logic
component detects a gear change and gradually opens or closes the cor-
responding clutch using a given switching-time constant. This is the only
additional parameter that is needed for the extended model. Its value can
either be measured in real transmission processes or chosen to minimize
the vibrations that appear in the model during the gear switch (Figure 8).

Example 3: Queueing system

In many application areas, such as logistics, manufacturing or computer
networks, a standard situation appears over and over again: Entities (cus-



33

Figure 8: Engine and drive shaft speeds during a gear shift.

tomers, parts or data packets) appear in regular or random time intervals
and wait in a queue until they are served (by a checkout, a machine or a
router). Figure 9 shows the basic parts of such a queueing system together
with an important detail: The server sends a signal bl to the queue, when-
ever its state (free or working) changes, which in turn changes the state
of the queue output between open and blocked .

Figure 9: Basic queueing system.

A widely used modeling technique to describe such systems is the
discrete event-based modeling, where components change their states for
only one of two reasons: Either an external event arrives or an internal



34

state change is due that has been scheduled before. The DEVS formal-
ism [4] has been introduced to de�ne such models, together with their
behaviour in a simulator, with mathematical precision. In order to sim-
plify the construction of large models consisting of many basic components
the variant RPDEVS has been proposed in [5], which especially allows for
Mealy components, where output events can depend directly on the input
events. To make this possible the abstract model of the simulator had to
be adapted [6], it now contains special internal iterations (�λ iterations�)
to follow a chain of events through the system. A concrete implementa-
tion of the RPDEVS simulator, called PowerRPDEVS, and a set of basic
components, are available freely from [7].

The basic components of the queueing example can be easily built
using C++ and a set of basic functions that are provided with the sim-
ulator. The construction of the complete example is done in a graphical
environment. Simple test models can be used to check the correctness of
the components, but running the complete model still leads to the error
message

Error at t = 1.

maximum number of lambda steps has been reached.

illegitimate model due to a non-resolvable algebraic

loop.

Tracking the outputs through the complete model, the solver iterates, until
a steady state is reached. During the loop, outputs can be withdrawn, if
the states of the components change. This leads to the following sequence
of events in the example:

� generator sends entity to queue,

� queue sends entity to server,

� server sends bl = true (�blocked�) to queue,

� queue changes output state to "blocked",

� queue doesn't send entity (i. e. previously sent entity is retrieved)

� server is not blocked,

� queue sends entity to server ...



35

The sequence repeats, until it is stopped with an error, when the maximal
number or λ-steps is reached.

The mathematical problem behind the scenes is that the states and
output values of the queue and server components are unde�ned at t = 1.
The solver tries hard to �nd proper values, but does not succeed. Actu-
ally, both components go through several states and outputs in immediate
succession (an �event cascade�), which is a very reasonable behaviour, but
can not be resolved by the simulator.

Going back a step and having a look at some of the concrete systems,
one wants to model here, one �nds how the problem is solved in reality:
The transport of a signal and the change of a state always need a (usually
small) time. Therefore the steps in an event cascade happen at increasing
times. But introducing these time delays in the modeling leads to a large
amount of additional parameters with unknown values, which clutter up
the model and have to be supplied somehow.

A way how to include delays without adding an abundance of new
parameters has been proposed in [8]: by using in�nitesimal delays for all
signal transports and �immediate� state changes. This can be done in a
mathematically sound way by resorting to the �eld of hyperreal numbers
∗R [9], which extends R by a value ε > 0 that is smaller than any positive
real number. Being a �eld, ∗R contains numbers such as ε2, but for the
implementation in a simulation program, time values of the form a + bε
with a, b ∈ R are su�cient. To explicitely order concurrent events, one can
use di�erent values of b, but very often, a simple default delay ε is su�cient
almost everywhere. This has been con�rmed by a systematical study of a
set of standard examples in [10]. The only exception that has been found
are components that � like the queue � can output a �concurrent� sequence
of several entities. Here the internal delay has to be set to 2ε, which can
be prede�ned in a standard component library. In this way, the number
of delay parameters a user has to consider, can be reduced drastically to
an easily manageable number. With a corresponding simulator [11] the
queueing example runs without problems and reproduces the expected
results.



36

Example 4: Distribution of compressed air

Pneumatic systems are used frequently to distribute power in factory build-
ings. They often consist of large distribution networks with several pressure
sources and a lot of time-varying consumers. A very simple example with
one source, a tee branch, a pipe and two di�erent consumers is shown in
Figure 10.

Figure 10: Simple pneumatics system.

To model this system in Modelica, one can use the Fluid library that
is part of the Modelica Standard library (MSL). It basically describes qua-
sistatic processes and contains components for one-dimensional thermo-
�uid �ow in pipes, vessels or machines [12]. For the special needs of pneu-
matics modeling, the additional PneuBib library has been introduced in
[13] that is based on the MSL Fluid library. Using these tools in Dymola,
the example can be implemented easily, but running the simulation, one
gets the error message:

Warning: Failed to solve nonlinear system using Newton

solver...

At time T = 5.130275e-04 ... the corrector could not

converge because there were model evaluation failures

and the stepsize cannot be reduced further.

Integration will be terminated..

The origin of this error does not lie in the mathematical formulation
of the model, but in the numerical method. The model consists of 170
equations, many of which are coupled and highly non-linear. To solve
them with a standard Newton solver, one needs proper initial values, but



37

these are unknown here, and the values guessed by the solver do not work
� the Newton iteration does not converge. This is a well-known problem,
when using the MSL Fluid library, therefore mathematical methods based
on homotopy have been introduced in Modelica to solve the initialization
problem [14]. But at least the authors of [13] were not able to �nd a
working solution along these lines.

The model starts with given initial values for the pressure and the
mass �ow of the consumers. But in reality a system usually starts with an
ambient pressure and zero mass �ow everywhere. After switching on the
compressors, the global pressure di�erence rises. Accordingly, the mass
�ows increase with a small delay due to the inertia of the accelerated �uid
masses. This in turn leads to the build-up of the local pressure di�erences,
which �nally reach the values that the quasistatic model tried to �nd
immediately.

Following these lines, Zimmer incorporated the described real-world
behaviour as simply as possible to construct a thermo-�uid library that
is not plagued by initialization problems [15]. For this purpose, he ex-
tended the model equations by introducing the inertial pressure r, which
� according to the Euler equation � is given by

r = −L
dṁ

dt
.

The inertance L is de�ned by the geometry of a component and is usually
set to a model-wide default value. The actual pressure p can now be split
into a quasi-static part p̂ and the inertial part,

p = p̂+ r,

where one is interested only in the behaviour of p̂.

Still, the coupling of several components leads to large systems of
non-linear equations. This problem is solved in [15] by using the quasi-
static pressure p̂ instead of the actual pressure p in the junction equations.
The transient behaviour at the initialization phase is now only computed
approximately, but one is not interested in it anyhow. As a consequence,
the huge coupled system is decomposed into independent small non-linear
parts, while the total coupling is done by the relaxation using a simple
linear di�erential equation.



38

These ideas have been incorporated into the DLR ThermoFluid-
Stream Library (TFS) [16], which provides components for vessels, pipes
and machines and is freely available. Using it as the basis for the PneuBib
library, the example model runs without problems. Its simulation results
are shown in Figure 11 and clearly show the progression from the approx-
imate relaxation at t < 1 to the quasistatic behaviour for t > 1.

Figure 11: Pressures and mass �ows in the TFS based pneumatics model.

Conclusions

As we have seen, oversimpli�cation can lead to very di�erent kinds of
mathematical problems. In the examples we have found an equation with
several solutions (ex. 1), unde�ned restart values (ex. 2), insu�cient start
values for a Newton solver (ex. 4) and �functions� with several values at
the same time (ex. 3).

The reason, why these problems appeared, was the neglect of certain
physical details. Though the examples and the mathematical problems



39

were quite di�erent, the physical reason was basically always the same:
the assumption that physical processes, which we are not interested in,
can be modeled as if they occured in zero time. This is obvious in ex. 1
and 3, where the propagation time of signals or the switching time of states
have been discarded. But it is true even for ex. 2 and 4, where the mass
inertia has been omitted, which leads to instanteneous changes instead of
gradual relaxation or adaption processes.

While the inclusion of the missing physics in the model can resolve
the mathematical problems, it leads to new di�culties, namely, the ap-
pearance of � often many � new parameters that need meaningful values.
The examples have shown di�erent ways how to cope with them: An easy
way is to aggregate them all into one place (ex. 1). If this is not possible,
because the e�ect has to be included in many parts of the model, one can
set the parameters to a default value (ex. 2, 4). This has the advantage
that one can adapt individual values, where necessary. A di�erent strategy
has been used in ex. 3: The unknown physical values have been replaced
by abstract entities, which subsume the basic properties (�very small, but
not zero�) without needing a concrete numerical value.

One could boil down the lessons learned from the four examples into
a short recipe, what to do, when the simulator strikes (and it is de�nitely
not a bug):

1. Isolate the mathematical problem.

2. Find the physical cause.

3. Model the missing physics as simply as possible.

4. Avoid the introduction of many new parameters.

Unfortunately, these steps are often hard to implement in real-world prob-
lems. They need insight into the physical properties of the system at hand
and creativity especially for steps 3 and 4. Nevertheless, it is often worth
the e�ort, because instead of a model containing obscure hacks to ��x the
mathematics� one gets a model that is easier to understand and generally
more robust.



40

Bibliography

[1] The MathWorks, Inc.: Simulink: Simulation and Model-Based Design.

https://www.mathworks.com/products/simulink/ .

[2] Stefan Krause: BMW's ZF 8HP 8 speed transmission.

https://commons.wikimedia.org/wiki/File:ZF_Stufenautomatgetriebe_8HP70.jpg,
licensed under Free Art License
(https://en.wikipedia.org/wiki/en:Free_Art_License).

[3] Junglas, P.: Praxis der Simulationstechnik. Verlag Europa-Lehrmittel Haan-
Gruiten (2014).

[4] Zeigler, B. P., Muzy, A.; Kofman, E.: Theory of Modeling and Simulation.

Academic Press San Diego, 3rd ed. (2019).

[5] Preyser, F. J.; Heinzl, B.; Kastner, W.: RPDEVS: Revising the Parallel

Discrete Event System Speci�cation. In: Proc. 9th Vienna Int. Conf. Mathemat-
ical Modelling, Wien, Austria (2018).

[6] Preyser, F. J.; Heinzl, B.; Kastner, W.: RPDEVS Abstract Simulator. SNE
Simulation Notes Europe, 2, 29, 79�84 (2019).

[7] Preyser, F. J.: PowerRPDEVS on sourceforge.

https://sourceforge.net/projects/powerrpdevs/ .

[8] Junglas, P.: NSA-DEVS: Combining Mealy Behaviour and Causality. SNE Sim-
ulation Notes Europe, 2, 31, 73�80 (2021).

[9] Goldblatt, R.: Lectures on the Hyperreals. Springer New York (1998).

[10] Jammer, D.; Junglas, P.; Pawletta, T.; Pawletta, S.: Implementing Stan-

dard Examples with NSA-DEVS. SNE Simulation Notes Europe, 4, 32, 195-202
(2022).

[11] Jammer, D.; Junglas, P.; Pawletta, T.; Pawletta, S.: A Simulator for

NSA-DEVS in Matlab. In: Proc. of ASIM 2022 � 26. Symposium Simulation-
stechnik, Wien, Austria (2022).

[12] Franke, R.; Casella, F.; Sielemann, M.; Proelss, K.; Otter, M.: Standard-
ization of thermo-�uid modeling in Modelica.Fluid. In: Proc. 7th Int. Modelica
Conference, Como, Italy (2009).

[13] Drente, P.; Junglas, P.: Simulating a simple pneumatics network using the

Modelica Fluid library. SNE Simulation Notes Europe, 2, 25, 85�92 (2015).

[14] Casella, F.; Sielemann, M.; Savoldelli, L.: Steady-state initialization of

object-oriented thermo-�uid models by homotopy methods. In: Proc. 8th Int. Mod-
elica Conference, Dresden, Germany (2011).

[15] Zimmer, D.: Robust object-oriented formulation of directed thermo�uid stream

networks. Mathematical and Computer Modelling of Dynamical Systems, 3, 26,
204-233 (2020).



41

[16] Zimmer, D.; Weber, N.; Meiÿner, M.: The DLR ThermoFluidStream Li-

brary. In: Proc. 14th Int. Modelica Conference, Linköping, Sweden (2021).

Author

Prof. Dr. rer. nat. Peter Junglas

Private Hochschule für Wirtschaft und Technik Vechta/Diepholz

Am Campus 2

D-49356 Diepholz

E-Mail: peter@peter-junglas.de


