- We look at a rigid body with moments of inertia 1, 3, 5 (in suitable
units). In a special coordinate system it is described by the diagonal
matrix
J = diag([1 3 5])
J =
1 0 0
0 3 0
0 0 5
- We rotate the system, first by 30 degrees around the x axes, then 45
degrees around the z axes, using the rotation matrices
ang1 = 30/180*pi
ang1 =
0.5236
Q1 = [1 0 0; 0 cos(ang1) sin(ang1) ; 0 -sin(ang1) cos(ang1)]
Q1 =
1.0000 0 0
0 0.8660 0.5000
0 -0.5000 0.8660
ang2 = 45/180*pi
ang2 =
0.7854
Q2 = [cos(ang2) sin(ang2) 0; -sin(ang2) cos(ang2) 0; 0 0 1]
Q2 =
0.7071 0.7071 0
-0.7071 0.7071 0
0 0 1.0000
- This leads to the following matrix for the moment of inertia in the
rotated system:
Jrot = Q2*(Q1*J*Q1')*Q2'
Jrot =
2.2500 1.2500 0.6124
1.2500 2.2500 0.6124
0.6124 0.6124 4.5000
- The principal moments of inertia are given by the eigenvalues of Jrot:
eig(Jrot)
ans =
1
3
5
- which of course was expected.

Peter Junglas 8.3.2000